Coreference Resolution with ILP-based Weighted Abduction

<u>Naoya Inoue</u>[†], Ekaterina Ovchinnikova[‡], Kentaro Inui[†], Jerry Hobbs[‡]

> [†]Tohoku University, Japan [‡]ISI/USC, USA

Motivation

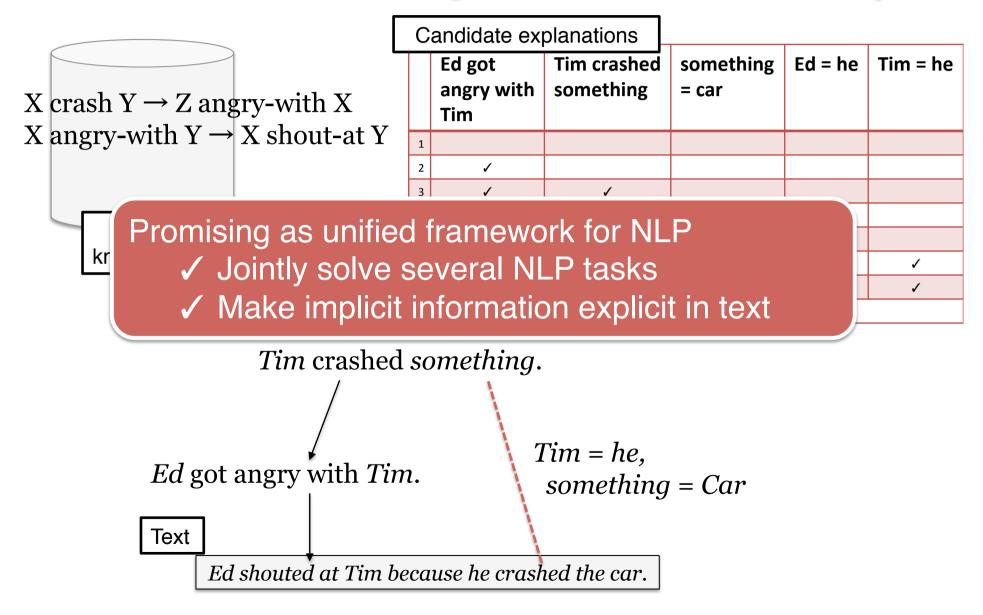
- Long-term goal: unified framework for discourse processing
- Solution: logical inference-based approach
 - -World knowledge: set of logical formulae
 - -Discourse processing: logical inference to logical forms (LFs) of target discourse
 - -Interpretation as Abduction [Hobbs+ 93]

Interpretation as Abduction

- Abduction: inference to the best explanation to observation
- Interpreting sentences: finding best explanation to LFs of sentences
- Best explanation gives solution for broad range of NLP tasks

-By-product of abductive inference

Abductive interpretation: example



Attractive but...

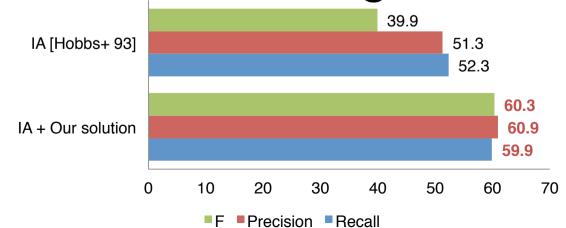
- Abductive discourse processing: attractive but still has many issues
 - -How to perform efficient inference?
 - Best explanation finding: NP-hard
 - -How to measure goodness of explanation?
 - Heuristic tuning: itractable on large BK

Our work

- This talk: address overmerging issue in abductive discourse processing
 - -Finding least-cost explanation often produces wrong eq assumptions
 - Equality = Coreference
 - Critical issue in abductive discourse processing
 - -Explore through coreference evaluation

Sneak preview (1/2)

- Successfully prohibit wrong merges
 - -28,233 wrong merges/33,775 merges (83.6%) → 7,489/11,001 (68.0%)
- Improve overmerging problem by 20 % BLANC-F over original IA



Sneak preview (2/2)

- Coreference study perspective: novel coreference model
 - -Document-wise
 - -Logical inference-based
 - Integrate statistical machine learning of logical inference with traditional clustering-based approach

Talk outline

Introduction
 Key Idea

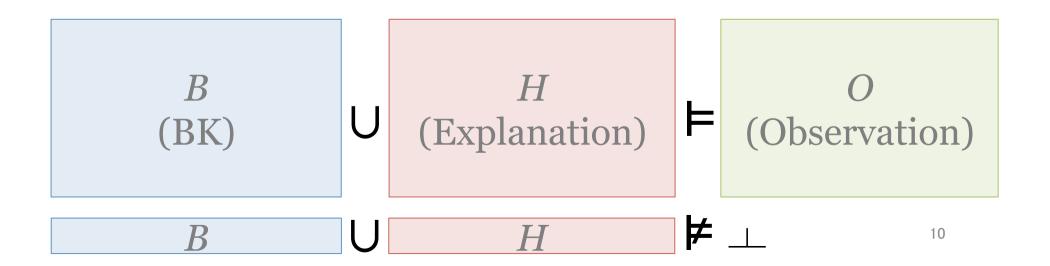
Our system

Evaluation

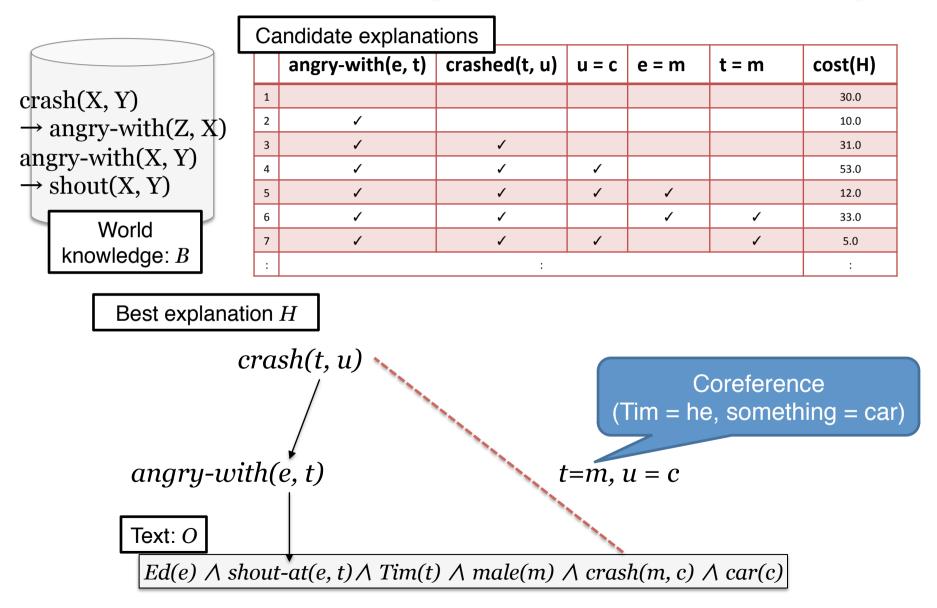
Conclusion

Weighted Abduction (WA)

- Input: background knowledge (BK) B, observation O
 - -B: set of first-order logical formulas (LFs)
 - -O: set of first-order literals
- Output: least-cost explanation H of O w.r.t. B
 -H: set of first-order literals, such that:



Abductive interpretation: example



Problem: overmerging

- Abduction: find least-cost explanation
 - -Finding least-cost explanation \Rightarrow making equality assumptions as much as possible
 - -Unification of two literals leads to minimal explanation

• $H = \{p(x), p(y), p(z)\} \rightarrow H' = \{p(x), x = y = z\}$

 Frequently produces inconsistent explanation



"A cat and dog run. Cat and dog refers to the same entity."

Problem: overmerging

- Key problem: knowledge about disjointness is not sufficient
 - -Few knowledge acquisition study focus on disjointness knowledge
 - Assuming complete disjointness knowledge is not reasonable
 - Could be low coverage and/or noisy

Key idea: weighted unification

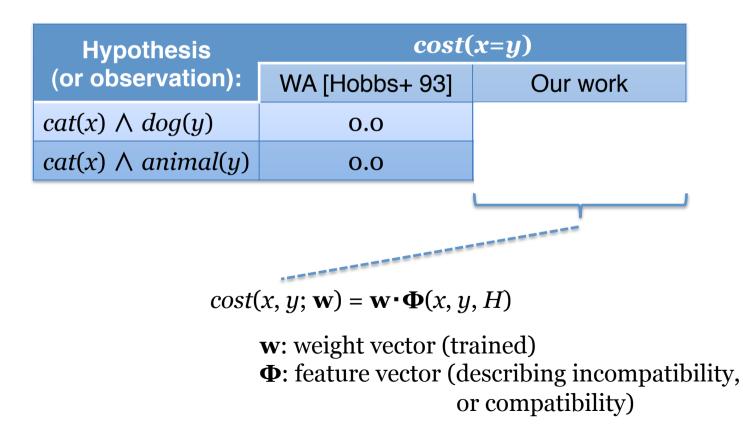
Solution: cost for unification

-Weighted abduction [Hobbs+ 93]: cost is not needed for unification

- Unification always reduces cost
- -Modeled by weighted feature function
 - Features: disjointness knowledge base + linguistically-motivated features
 - Discriminative training of cost function from coreference-annotated dataset

Trainable cost function for weighted unification

Hypothesis: $run(x) \land run(y) \land x=y$



Novelty

Abduction perspective

- First work to exploit learning-based approach for overmerging problem
 - [Ovchinnikova+ 11]: rule based
- Coreference resolution perspective
 - Latent clustering-based coreference resolution model
 - Latent variables: explanation of text
 - Exploit logical inference for coref resolution
 - [Poon & Domingos 08, Song+ 12]: Markov Logicbased, but not for reasoning

System overview

• Preparation:

Encode world knowledge as a set of logical formulae (= B)

Input: text (one document)

- 1) Generate LFs of text
- 2) Perform weighted abduction, where:
 - Observation: LFs of text
 - **Background knowledge:** world knowledge (= *B*)
 - Cost function: [Hobbs+ 93] + weighted unification

3) Build up coreference clusters from explanation

• Output: set of coreference clusters

1) Generate LFs

 Exploit off-the-shelf semantic parser, Boxer [Bos 09]

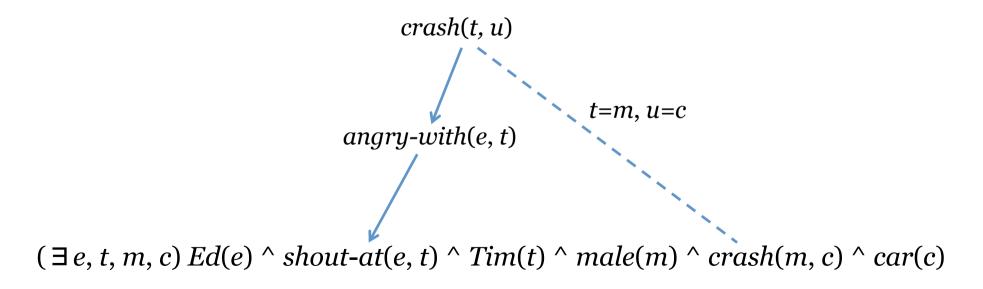
 $(\exists e, t, m, c) Ed(e) \land shout-at(e, t) \land Tim(t) \land male(m) \land crash(m, c) \land car(c)$

Ed shouted at Tim because he crashed the car.

2) Abductive interpretation

Background knowledge:

 $(\forall x, y) crash(x, y) \rightarrow (\exists z) angry-with(z, x)$ $(\forall x, y) angry-with(x, y) \rightarrow shout-at(x, y)$



Ed shouted at Tim because he crashed the car.

Cost function (1/2)

 $cost(H; \mathbf{w}) = \sum_{h \in L(H)} cost(h)$ (a) [Hobbs+ 93] • Two parts:

a) Costs of assumed literals [Hobbs+ 93]

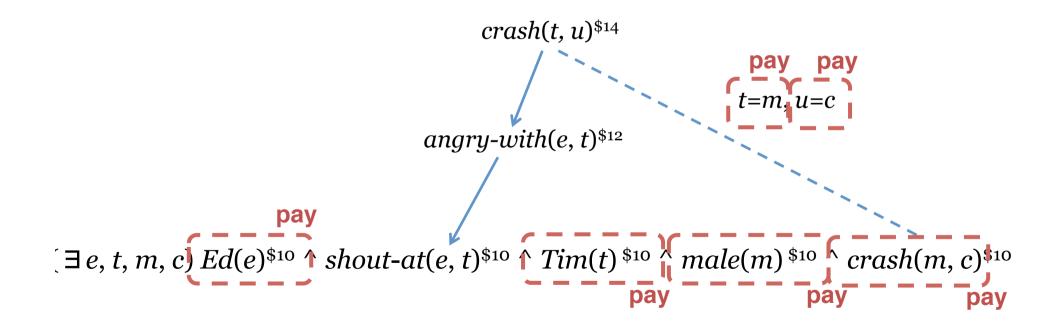
Assumed literals: literals not explained

b) Costs of equality assumptions (our extension)

Cost: calculated by weighted linear feature function

Cost function (2/2)

 $cost(H; \mathbf{w}) =$



Feature vector: $\Phi(x, y, H)$

- WordNet-based features
 - Are x and y antonym? Are x and y siblings?
 - Are x and y proper names not belonging to the same synset?
- Lexico-syntactic patterns
 - Do x and y appear in explicit non-identity expressions?
 - e.g. x is different from y
 - Do x and y appear in functional predicates?
 - e.g. x is father of Ed. y is father of John.
 - Are x and y owned by same literal?
 - e.g. eat(x, y)

Weight vector w: how to tune?

- Interpret the cost function as a latent coreference resolution model, where:
 - Output variables: coreference relations
 - -Latent variables: explanations

Apply document-wise supervised learning

- Online large-margin training: Passive
 Aggressive (PA) algorithm [Crammer+ 06]
 modified for learning with latent variables
- Training data:
 - (Input: LFs of text, Output: equality assumptions describing coreference relations)

-e.g. (John(x) \land cool(x) \land male(m) \land run(m), x=m)

Modified PA

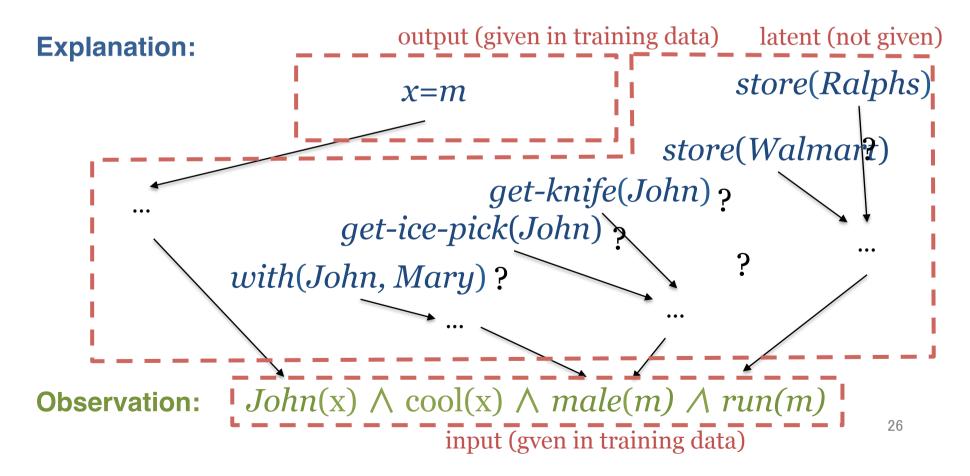
• At high level: EM-like training

-Repeat the following steps:

- –1. Given observed states, estimate most probable states of unobserved (latent) variables with current weights
 - Observed: equality assumptions
 - Unobserved (latent): explanation
- -2. Update weight vector as if all the states are fully observed
 - Large-margin update [Crammer+ 06]
 - All the states = best explanation

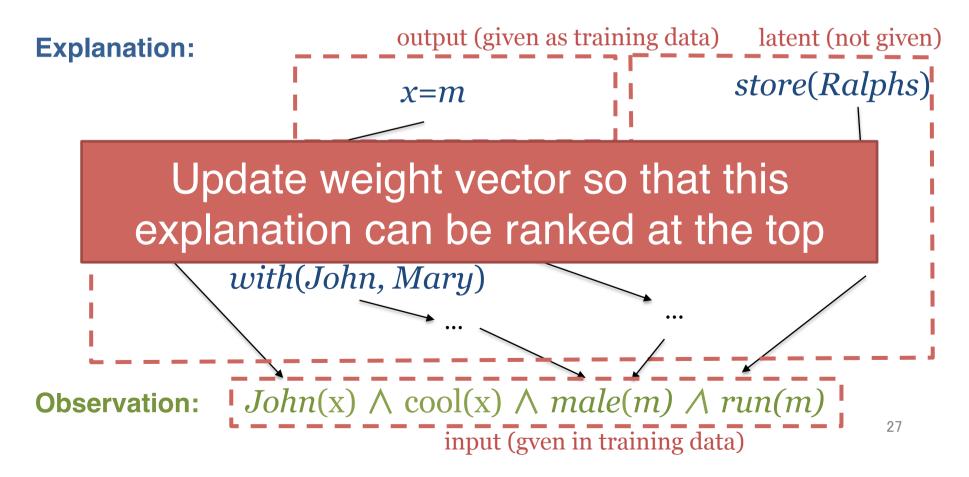
Example update

 Estimate most probable explanations consistent with gold equality assumptions



Example update

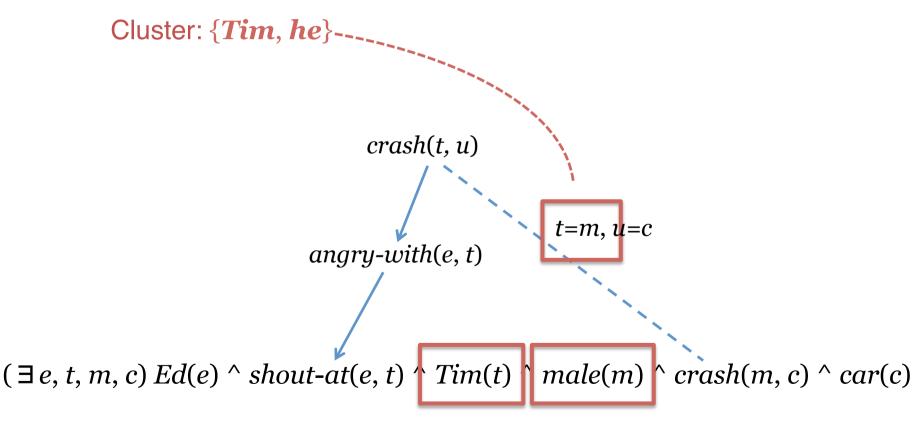
 Estimate most probable explanations consistent with gold equality assumptions



Inference

- Least-cost finding problem: NP hard
- Extend state-of-the-art ILP-based abductive reasoner [Inoue & Inui 12]
 - -Lifted inference: directly perform abduction on first-order level
 - -Use Integer Linear Programming technique for efficient search

3) Identify coreference clusters



Ed shouted at Tim because he crashed the car.

Talk outline

Introduction
 Key Idea
 Our system
 Evaluation
 Conclusion

Evaluation

Dataset

-CoNLL 2011 SharedTask [Pradhan+ 11]

- Test: 101 documents from dev set
- Training: 100 documents from training set

-Background knowledge:

• WordNet, FrameNet, Narrative Chains

Evaluation criteria

- -Overmerging Rate, BLANC metrics [Recasens & Hovy 10]
 - Other criteron: not suitable for exploring overmerging issues

Background knowledge (1/2)

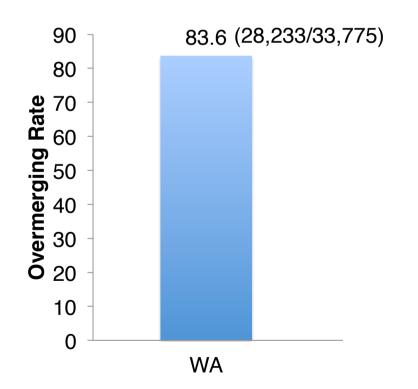
- WordNet [Fellbaum 98]: 22,815 axioms
 - Hyperonymy, Causation, Entailment, Meronymy, Membership
 - $(\forall x)$ synset1 $(x) \rightarrow$ synset2(x)
- FrameNet [Ruppenhofer+ 10]: 12,060 axioms
 - Frame-lexeme mappings
 - e.g. $(\forall e_1, e_2, x_1, x_2, x_3)$ GIVING $(e_1) \land$ DONOR $(e_1, x_1) \land$ RECIPIENT $(e_1, x_2) \land$ THEME $(e_1, x_3) \rightarrow$ give $(e_1, x_1, x_3) \land$ to (e_2, e_1, x_2)
 - Frame-frame relations
 - e.g. GIVING causes GETTING

Background knowledge (2/2)

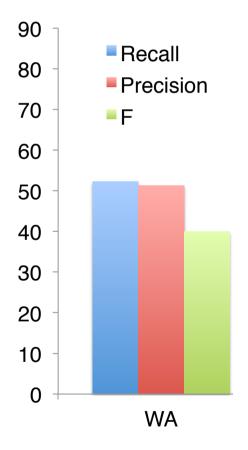
- Narrative chains [Chambers and Jurafsky 09]: 1,391,540 axioms
 - Partially ordered set of events in temporal order, with slot realizations
 - -Verb-script mappings
 - e.g. $(\forall s, e_1, x_1, x_2, x_3)$ Script#1(s, e_1, x_1, x_2, x_3) $\rightarrow \operatorname{arrest}(e_1, x_1, x_2, x_3) \land \operatorname{police}(e_2, x_1)$
- AIDA tool [Yosef+ 2011]
 - -Normalization of proper names
 - e.g. "A. Einstein", "Einstein, Albert" → "Albert_Einstein"

Impact of our extension: Overmerging Rate

Overmerging Rate (%) = $\frac{\# \text{ of wrong merges}}{\# \text{ of merges}}$



Impact of our extension: BLANC metrics



Why is it not comparable?

- Cannot capture deeper contradiction: more features are needed
 - Example deeper contradiction:
 - <u>goods</u> made in Japan, German <u>goods</u> $goods(x) \land make(e, u, x) \land in(e, Japan)$ $goods(y) \land german(y)$
 - Solution: exploit syntactic clues, discourse saliency, distributional similarity etc.
- Low recall: more world knowledge is needed – e.g. YAGO, freebase, ConceptNet 5.0
- But has many interesting theoretical aspects, and highly extensible

Summary

- Address overmerging problem in abduction-based discourse processing
 - –Extend Hobbs+ [93]'s cost function: add cost function for equality assumptions
 - Cost function is weighted feature function
 - Propose automatic tuning method of weights on coreference-annotated corpus
- Improvement by 20% BLANC-F over original weighed abduction

Future work

- Apply learning procedure to costs of assumed literals
 - -Generalize cost function as weighted linear model, apply large-margin training
- Scale up reasoning process

 Cutting plane-based MLNs [Riedel 08]
- Incorporate more features, and world knowledge for increasing both precision & recall