T-21 Online Large-margin Weight Learning for First-order Logic-based Abduction

Naoya Inoue, Kazeto Yamamoto, Yotaro Watanabe, Naoaki Okazaki, and Kentaro Inui Tohoku University

 $score(H_1) = 4.3$

 $score(H_2) = 13.5$

Background

*Abduction is inference to the best explanation

Given:

- Observation: {*get-gun*(*John*), *go-to-store*(*John*)}
- Background knowledge: $(\forall x) hunt(x) \rightarrow get-gun(x)$ $(\forall x)$ go-shopping(x)
 - $(\forall x) \ rob(x) \rightarrow get-gun(x)$ $(\forall x) \ rob(x) \rightarrow go\text{-}to\text{-}store(x)$

 \rightarrow go-to-store(x)

Find:

- $score(H_{2}) = 10.8$ - The best explanation (≡highest-score explanation)
 - H_1 : {hunt(John), go-shopping(John)} H_2 : {rob(John)} H_3 : {rob(John), hunt(John)}
- *There are many applications: natural language processing, plan recognition etc.

- *Tuning of score function relies on:
 - Manual tuning
 - Probabilistic logic-based learning (e.g. Markov Logic Networks
 - [Richardson & Domingos 06])

Problem: inference is not scalable; learning is even harder

Weight Learning for First-order Logic Abduction Designed by the user:

- * Desiderata for learning framework
 - Scalability: computationally cheap, good results in a short time \rightarrow online
 - Accurateness: discriminative power
 - Usability: learn from partially observed dataset
- *Our solution
 - e.g. 1 if "rob" and "gun" are included in H; 0 otherwise.
 - → *large-margin* training
- → with *latent variables!* w: weight vector

- *The learning framework
- (1) Assume weighted linear scoring model: $score(H; \mathbf{w}) = \mathbf{w} \cdot \Phi(H)$ Φ: feature vector
- (2) Learn w from training examples online, following the large-margin principle:

 $\bigcap O_i$: observation (input) Training examples $T = \{(O_i, H_i)\}_{i=1}^{N} \mid U_i$. gold-standard explanation for O_i (output)

 O_i : {get-gun(John), go-to-store(John)} H_i : {rob(John)}

 $(O_i, H_i) \leftarrow \text{receiveExample}(T)$

Passive Aggressive [Crammer et al. 2006]

 $\mathbf{w} \cdot \mathbf{\Phi}(H_i)$

 $\left(H_{i}^{3}\right)\left(H_{i}^{2}\right)\left(H_{i}^{2}\right)$ score $\Delta(H_i, H_i')$

 $\mathbf{W}_{t+1} \leftarrow \text{update}(\mathbf{W}_t, H_i, H_i')$

Tuned

 $\Delta(H_i, H_i)$: loss function

 $\mathbf{w} \cdot \mathbf{\Phi}(H_i')$

partially-specified update:

update w s.t. any explanation that includes H_i is the best

- (\times) H_1 : {hunt(John), go-shopping(John)}
- $(\bigcirc) H_2$: {rob(John)}
- $(\bigcirc) H_3$: {rob(John), hunt(John)}

 $H_i \leftarrow \text{abduction}(B, O_i)$ s.t.

 H_i is included [Yamamoto et al. 12]

Feature-based+Abduction

Evaluation

 H_1 : {hunt(John)}

 H_3 : {rob(John), hunt(John)}

 H_i '—abduction (B, O_i)

 H_2 : {rob(John)}

*Q1: Does learning have positive impact?

- Task:

*Q2: Does combining logic-based reasoning with existing classifier give better predictive performance?

- Task: Closed Test Coreference resolution 0.5 Open Test - Gold-standard: \$507 equalities 0.3 - Dataset: CoNLL-2011 Shared Task 0.2 - Training/Testing: 0.1 100 documents

Findings

- *Weight learning reduces predictive loss
- *Combining abductive reasoning with feature-based classifier reduces predictive loss

Untuned

*Generalization ability on unseen dataset

Future work

- BK: 300,000 axioms

- *Use k-best explanations for update
- Comparison with feature-based classifier exploiting world knowledge as features

This work was partially supported by Grant-in-Aid for JSPS Fellows (22-9719), Grant-in-Aid for Scientific Research (23700157, 23240018), and JST, PRESTO.

Feature-based

Publicly available at: http://github.com/naoya-i/henry-n7oo/