

ITS World Congress

Bordeaux, France 5 to 9 October 2015

Recognizing Potential Traffic Risks through Logic-based Deep Scene Understanding

Naoya Inoue^{*1}, Sosuke Kobayashi^{*1}, Yasutaka Kuriya^{*2} and Kentaro Inui^{*1}
*1: Tohoku University
*2: DENSO CORPORATION

TOWARDS INTELLIGENT MOBILITY

Better use of space

Organised by

Co-organised by

Hosted by

On behalf of

Supported by

Research goal

- Automatic deep understanding of traffic risks
 - WHAT risks can be predicted?

– WHY are these risks predicted?

[Chubu-Nippon-Driver-School 1999]

- App.: ADASs, automated driving, etc.

TOWARDS INTELLIGENT MOBILITY

Better use of space

Challenges

General framework for risk prediction [Rendon-Velez, TMCE2008]:

- Perception: pretty advanced!
- Analysis: physics simulation-based approach is explored (e.g., [Broadhurst et al. IV2005]), but:
 - Not good at long-term prediction: prediction of behavior of traffic agents only depend on physical info. (velocity, position, etc.)
 - No qualitative explanation of risks: trajectories are explanation; but not sufficient in some situation

Key idea:

knowledge-based commonsense reasoning

Better use of space

Overall architecture

Abduction (on First-Order Logic)

- Input *B*, *O*:
 - Background knowledge B: set of first-order logical formulae (e.g., $\forall x$ child(x) ⇒ will-rush-out(x))
 - Observation O: set of first-order literals (e.g., {car(C), truck(T), left-of(T, C)})
- Output H*:
 - Best explanation H^* (set of literals)

```
H^* = \arg\max_{H \in \mathcal{H}} score(H),
where:
B \cup H \models O \ (H \text{ should entail } O \text{ w.r.t. } B)
B \cup H \not\models \bot \ (H \text{ should not contradict } B)
```

Risk prediction as Abduction

Similarly to Hobbs et al. 1993... Risk prediction = Finding best explanation as to why the traffic scene is danger Best explanation H^* (Output): Background knowledge B Explain Explanation to Scene Explanation to Risk (by Causality and Ontological knowledge) (by Risk Pattern knowledge) Explain **Explain** Observation *O* (Input): Scene description Ego vehicle is in danger

Working example

Best explanation:

Advantages of abductive modeling

- Commonsense reasoning is complex
 - Various kinds of interdependent inferences (e.g., inference of intention, existence of hidden objects, ...) are involved
- Hard to find optimal setup of connecting several components for inferences...
- Abduction: declarative problem solving
 - Procedure is not needed to explicitly specify
 - Only knowledge base needs to be given

Knowledge representation

 All background knowledge/observation are written based on the following predicates

Type	Example	Description	
Type of object	taxi(x)	x is taxi	
Status of object	icy(x) left-head-lamp-on(x)	$egin{array}{ll} x & ext{is icy} \\ x & ext{fs head lamp is on} \end{array}$	
Relative position	left- $front$ - $of(x,y)$	x is left front of y	
Intention	will- $stop(x)$	x will stop	
Risk	risk(r, x)	x is in danger	

Inference rules

 100+ rules are manually induced from textbook for risk prediction [Chubu-Nippon-Driver-School 1999]

Type	Example	Description
Causality	large-vehicle(x) & in-front- of(Now, x, y) \Rightarrow will-avoid(y)	If large vehicle x is in front of y , then y will avoid it
Ontological	$bicycle(x) \Rightarrow vehicle(x)$ $car(x) \& bicycle(x) \Rightarrow \bot$	- x is vehicle- car and bicycle are mutually exclusive concept
Risk pattern	$in-front-of(Now, x, y) \& will-stop(x) \Rightarrow risk(r, y)$	If x in front of y will stop, then y is in danger.

Evaluation

- Dataset
 - "Master of your driving", textbook for risk prediction [Chubu-Nippon-Driver-School 1999]
 - 93 problems
 - Web training materials for risk prediction:
 - 100 problems
 - Each problem contain: traffic scene (picture) and (2-3) expected traffic risks
- 10-fold cross validation
- Abductive inference engine:
 - Phillip [Yamamoto et al. IJMLC2014]
- Score function:
 - Weighted linear model + Soft Exact Confidence Weighted Learning [Wang et al. ICML2012]

Setting

Evaluation measures

```
    Precision = # of problems where model predicts risk correctly # of problems where model predicts risk
    Recall = # of problems where model predicts risk correctly # of all problems
    F-score = 2×Precision×Recall Precision+Recall
```

Compare with 3 baseline models:

- random: naïve system that randomly chooses person/vehicle in traffic scene
- majority: naïve system that says all people and vehicles in traffic scene would rush out
- SVM: Ranking Support Vector Machines [Joachims KDD2003]-based risk prediction system

Results

Model	Precision@k	Recall@k	F
Baseline (random)	2.0 (2/100)	1.2 (2/161)	1.5
Baseline (majority)	22.6 (95/420)	59.0 (95/161)	32.7
Baseline (SVM, k=1)	30.0 (30/100)	18.6 (30/161)	23.1
Baseline (SVM, k=2)	30.5 (61/200)	37.9 (61/161)	33.9
Baseline (SVM, k=3)	28.0 (84/300)	52.2 (84/161)	36.5
Abduction (k=1)	31.5 (39/124)	24.2 (36/161)	27.4
Abduction (k=2)	30.3 (59/195)	36.6 (69/161)	33.1
Abduction (k=3)	22.5 (62/276)	38.5 (78/161)	28.4

- Proposed model did not outperform baseline models very much
- Why:
 - Lack of physical information (e.g., precise position of pedestrians)
 - Knowledge base is not generalized well

Example inference result

Summary

- Proposed abductive reasoning-based model for deep understanding of traffic scenes
- The experiment shows the potentiality of proposed model; still, there's a lot of room for improvement
- Future work
 - Integration of quantitative reasoning (e.g., physics-simulator) with current framework
 - Enrichment or generalization of knowledge base
 - Test with real sensor devices and actuator