Large-scale Cost-based Abduction in
Full-fledged First-order Predicate Logic with
Cutting Plane Inference

Naova Inoue, Kentaro Inui

Communication Science Lab.
(Natural Language Processing Lab.)
Tohoku University, Japan

Formally:

Cost-based Abduction (CBA) #UBEO

HUB L

Inference to the best explanation

— Find the best reason (H) for what is observed (O),
based on background knowledge (B)

Input: Observation

O = get-gun(John) " go-to-store(John) * (dx) rob(x)

Background Knowledge
(Vx) hunt(x) — get-gun(x)
(Vx) go-shopping(x) — go-to-store(x)
(Vx) rob(x) — get-gun(x)
(Vx) rob(x) — go-to-store(x)

B =-

Output: Best explanation

H, = hunt(John) * go-shopping(John)
H, = rob(John)
H, = rob(John) * hunt(John) ... ?

Formally:

Cost-based Abduction (CBA) #UBEO

HUB L

Inference to the best explanation

— Find the best reason (H) for what is observed (O),
based on background knowledge (B)

Input: Observation

O = get-gun(John) " go-to-store(John) * (dx) rob(x)

Background Knowledge
(Vx) hunt(x) — get-gun(x)
(Vx) go-shopping(x) — go-to-store(x)
(Vx) rob(x) — get-gun(x)
(Vx) rob(x) — go-to-store(x)

B =-

Output: Best explanation

H, = rob(John)

Formally:

Cost-based Abduction (CBA) V50

HUB L

Inference to the best (=lowest-cost) explanation

— Find the lowest-cost reason (H) for what is observed (O),
based on background knowledge (B)

Input: Observation

O = get-gun(John) " go-to-store(John) * (dx) rob(x)

Background Knowledge

[(Vx) hunt(x) — get-gun(x)

(VYx) go-shoppina(x) — go-to-store(x)
B =+ How to evaluate explanations?
- Several cost functions have been proposed
/ - Basic criterion: “minimal explanation is favored”

Outpult: Best explanation

10.8
4.3 H, = rob(John)
13.5

Research Issue

Goal: to model human language understanding with
abduction

v" A large amount of world knowledge has become available
as computational resources

v Cost-based abduction would be a good solution to real-life

natural language processing tasks [Hobbs+ 93,
Ovchinnikova+ 11, etc.]

Issue: how do we perform efficient inference with
large knowledge bases (KBs) in first-order logic?

— Most existing work targets “propositional” logic-based
abduction

— CBA is computationally expensive (combinatorial opt.)

CBA is computationally expensive

Inference to the best explanation

— Find the best reason (H) for what is observed (0),
based on background knowledge (B)

Input: Observation

o=get-qul 20 literals ore(John)

E - Mini-TACITUS (Mulkar-Mehta+ 07): = 30 minutes
- Markov Logic Networks (Richardson & Domingos 05)-
based approach (Blythe+ 11): 7 minutes

B —- -‘:(‘)’b‘ BUO_ODT)+ axioms [TV

rob(X) > go to-store(X)

ouput: f Combinatorial optimization

~ problem over 1,000 variables

Past work, current focus

s g (SECERAR

Work Inference Method Performance Expressivity
Mulkar-Mehta 07 Brute forth > 30 minutes Subset of F.O.L
Blythe+ 11 Markov Logic Networks 7 minutes Full F.O.L

f Inque & Inui 11 _ Integer Linear Programming (ILP) . _ _ _ _ _
| Inoue & Inui 12 ILP + Cutting Plane Inference

http://github.com/naoya-i/henry-n700/

ILP-based approach to CBA

Cutting plane inference for CBA

Runtime evaluation

ILP-based approach to CBA

arg min cost(H)
HeH

Problem: exponential growth of possible explanations 7
— Naive strategy would not give a good solution in realistic time

How do we find a better solution efficiently?
Key inspiration:
— CBA can be well-formulated through 0-1 ILP optimization
problem
Solution: exploit efficient search strategy developed in
Operations Research fields (e.g. branch-and-bound) by
formulating abduction as 0-1 ILP problem

/
Ve

Background knowledge B: Explanation H (Output): Observations O (Input):

U H =

Best output = lowest-cost:

min. cost(H)

Step 1. Search-space generation
- Enumerate possible constituents of explanations

ILP vz
Step 2. ILP optimization

- Find the best combination of the constituents
based on cost function

Step 1. Search-space generation
Step 2. ILP optimization

Background knowledge B: Explanation H (Output): Observations O (Input):

(Vx) hunt(x) — get-gun(x) get-gun(John)
(Vx) go-shopping(x) — go-to-store(x) gé)—to-SZOre(John)
(Vx) rob(x) — get-gun(x) (3x) rob(x)

(Vx) rob(x) — go-to-store(x) U =

Potential Elemental Hypotheses (P): Best output = lowest-cost:

@tep 1-1: enumerate set of literals that) min. cost(H)
can entail (part of) observations.
Explanation (output) is represented by

\combination of these literals.)

ILP variables: ILP objective:

11

Step 1. Search-space generation
Step 2. ILP optimization

Background knowledge B: Explanation H (Output): Observations O (Input):

(Vx) hunt(x) — get-gun(x)

get-gun(John)
(\Vlféé) go-shopping(x) — go-to-store(x) gg-to—sgore(John)
(Vx) rqj)\(x) — get-gun(x) (dx) rob(x)

(Vx) rd:b_f‘x)sﬁ go-to-store(x) U =

~
S S
S S
S N

S
~
S
N

o o
-

\\
~
~
~
S
\\ ~
~ ~
S Sy
S S

~ -
\\\\\
\\ ~

S,

Pégtential Elemental Hypothieses (P): Best output = lowest-cost:

min. cost(H)

(gé(—gun(Johr\z\)\go—to—store(John)\‘EIk\rob(x)\
\ S ‘V \

hu"r‘lt(John) go—Ashopping(John) robV(John)

_ - {Ohn\’ y

ILP variables:

rob(John) A rob(x) A x=John
yields the smaller hypothesis: rob(John)

12

Step 1. Search-space generation
Step 2. ILP optimization

Background knowledge B:

Explanation H (Output):

Observations O (Input):

(Vx) hunt(x) — get-gun(x) —
(Vx) go-shopping(x) — go-to-store(x)

—_—

get-gun(John)
—gp-to-store(John)

get-gun(John)
go-to-store(John)

(Vx) rob(x) — get-gun(x)
(Vx) rob(x) — go-to-store(x)

Step 2-3: introduce ILP constraints: (>0)
U - Entailment relations

- Transitivity over equalities

Step 2-3: introduce ILP constraints:

Potential Elemental Hypotheses (P):

(get-gun(John) go-to-store(John) dx rob(x)\

hunt(John) go-shoppiiig(John) rob(John)

\ x = John)

ILP variables:

(Step 2-1: assign 0-1 ILP variables h or s)
to each potential elemental hypothesis.
h,: 1if p is included in explanation

\ Sxy- 1 if x and y are unified in explanation)

Best output = lowest-cost:

min. cost(H)
_ Z cost(p)

pE€{p | p € H, p is not entailed}

ILP objective:
min. cost(H)

— Step 2-2: represent cost function
using 0-1 ILP variables. 13

Step 1. Search-space generation
Step 2. ILP optimization

Background knowledge B:

Explanation H (Output):

Observations O (Input):

(Vx) hunt(x) — get-gun(x) e— —

get-gun(John)
an-ta-stgre(John)

(Vx) go-shopping(x) — go-to-store(x)
(Vx) rob(x) — get-gun(x)

Entailment relations
(Vx) rob(x) — go-to-store(x) U €.g. Ia'hun’[(dohn) = hget-gun(John)

(x)

Transitivity over equalities
e.g.:

Sx=John T Sy=John -1=< Sx=y
Sy=John + Sx:y_ 1< Sx=John
Sx=y + Sy—John — 1< Sy:John

Potential Elen

(get-gun(John)

= lowest-cost:

t(H)

hunt(John) go—shoppianohn) rob(John)J

\ x =John
ILP variables: /
4)
hget—gun(John) hgo to-store(John) hEIx rob(x)
hhunt(John) hg ~shopping(John) hrob(John)

\ Sx,John)

_ Z cost(p)

pE€{p | p € H, p is not explained}

ILP objective:

min. cost(H)

— Z [hp - cost(p) - r, cost(p)]
peP 14

—

Entailment relations
S8 Wity = sl

Transitivity over equalities
e.g.:

Sx=John Sy=.John - 1< Sx=y
Sy:John + Sx:y_ 1< Sx=John
Sx=y + Sy—John — 1< Sy=John

_ Z [hp - cost(p) - r, cost(p)]

ILP variables: ILP objective:
é) .
hget-gun(John) hgo to-store(John) hEIx rob(x) min. cos t(H)
hhunt(John) hg ~shopping(John) hrob(John)
\ sx,John) pE P

Cutting plane inference for CBA

Runtime evaluation

Weak point of ILP-based approach

The number of transitivity constraints over equality
relations grows cubically

for all logical variables x, y, z:
X=y ANy=z=x=z(S,,+S,,—~1<5,,)
y=zAx=z=x=y(s,,+S,,—-1<5.)
X=zZAXx=Yy =Yy=z(S,,+S,,-1<5,))

— Order: (the number of logical variables)?

Processing time quickly increases when
observations and/or knowledge base are large

How can we reduce the computational complexity?

Cutting Plane Inference (CPI)

lterative optimization strategy for solving
optimization problems with large/infinite constraints
[Dantzig+ 54]

— Returns exact solution

Applied for various optimization problems:

— Parameter estimation in machine-learning [Joachims &
Finley 09, etc.]

— Structured prediction problems [Riedel 06, 08, etc.]

The algorithm:
— “all the constraints might not be violated at once”

C < {}: set of constraints
repeat

optimize with C

add violated constraints to C
until C does not change

Cutting Plane Inference for CBA

Solution to cubic growth of transitivity constraints!
— «all the transitivity constraints might not be violated at once”

General CPI: CPI for CBA:
C < {}: set of constraints C < {}: set of transitivity constraints
repeat repeat
optimize with C perform CBA with C
add violated constraints to C add violated transitivity constraints to C
until C does not change until C does not change
Benefits:
— Not required to generate all the transitivity constraints
In advance

— Much greater chance to get suboptimal ILP solutions
— The overall inference time might be faster

Working example

. N

—

solution
—>

—

Explanation H (Output):

Transitivity constraints that should be satisfied || Actually concerned constraints (C)

x=y " yYy=z = x=z
y=z " x=z = x=y
x=z " x=Yy = Y=z
x=y " y=w = x=w
y=w " x=w = x=y
x=w " x=y = y=w
x=z " z=w = x=w

Z=Ww " x=Ww = x=2

C < {}: set of transitivity constraints
repeat

perform CBA with C

add violated transitivity constraints to C
until C does not change

Working example

A~

7~

Explanation H (Output):

(3x) p(x)
(Jy) p(y)
(32) p(2)
q(A)

y=Z

X=Z

Transitivity constraints that should be satisfied || Actually concerned constraints (C)

x=y "yY=z = x=z

violated | y=z " x=z = x=y

x=z " x=Yy = y=z
x=y " y=w = x=w

N

y=w " x=w = x=y

x=w " x=y = y=w

x=z " z=WwW = X=Ww
N\

Z=W "~ X=W = X=Z

C < {}: set of transitivity constraints
repeat

perform CBA with C
I add violated transitivity constraints to C
until C does not change

Working example

1 Explanation H (Output):
(3x) p(x)
(3y) p(y)
(32) p(2)
q(A)
Z=W
2 xX=w
— —
_ 7~
Transitivity constraints that should be satisfied || Actually concerned constraints (C)
x=y " Y=z = x=z y=z " x=2 = x=y
x=z " X=Yy = Y=z Z=w " X=w = x=z
x=y " Yy=w = x=w /
y=w " x=w = x=y
x=w " x=y = y=w C < {}: set of transitivity constraints

x=z " Z=w = X=Ww / repeat
violated | z=w ™ x=w = x=z perform CBA with C
I add violated transitivity constraints to C
until C does not change

Working example

1 Explanation H (Output):
(3x) p(x)
(3y) p(y)
(32) p(2)
q(A)
X=Z
Z=W
— g —>
— yd
Transitivity constraints that should be satisfied || Actually concerned constraints (C)
x=y " Y=z = x=z y=z " x=2 = x=y
x=z " x=y = Y=z Z=Ww " X=W = X=Z
x=y " Y=w = x=w x=z " z=w = x=w
y=w " x=w = x=y /

x=w " Xx=y = y=w / C < {}: set of transitivity constraints
violated | x=z " z=w = x=w repeat

perform CBA with C
I add violated transitivity constraints to C
until C does not change

Working example

Explanation H (Output):

(3x) p(x)
(3y) p(y)
(32) p(2)
q(A)

Y=z

X=Z

x=y

—

(
Transitivity constrg No violations! concerned constraints (C)

x=y Optimal solution can be found with | ” x=z = x=y

just 3 constraints (originally 12).
X=Z /\.)L—y = Y=z

LN x=w = x=z

x=y " Yy=w = x=w x=z ™ Z=w = x=w

y=w " x=w = x=y

x=w " x=y = y=w C < {}: set of transitivity constraints
repeat

» perform CBA with C
add violated transitivity constraints to C

?until C does not change

Introduction

ILP-based approach to CBA

Cutting plane inference for CBA

Runtime evaluation

25

Runtime evaluation

How much does CPI improve the inference time?

Dataset

— Input: Recognizing Textual Entailment (RTE) [Dagan et al. 09]
» Real-life task in natural language processing
— Given two texts T and H, predict whether T entails H or not
— e.g. T: John tangoed. / H: John danced.
» Texts are converted to logical forms through Boxer [Bos 09]
— 30 literals on average x 800 problems

— Background knowledge: 300,000 axioms from popular
lexical databases [Fellbaum 98, Baker 98]

« 289,655 axioms from WordNet (e.g. synset9(x) => synset10(x))

o 7,558 axioms from FrameNet
(e.g. GIVING(e1, x, y) == GETTING(e2, vy, 2))

Tool
— |ILP solver: Gurobi optimizer 5.0

Results (1): effects on average time

Given time limit = 120 sec.,

Results _(2

): ffgcts on eac

“with CPI” is better |

1000
100 L

o

O L

= 10 |-

= [

©

o i

'.g 1 -

C L

O

© i

N

£ 0.1 |

o i

(@]

o

o i
0.01 |-
0.001

0.001

0.01 0.1 1 10
ILP optimization time of “without CPI”

100

1000

h problem

28

Summary

A large amount of world knowledge has become
available as computational resources, which makes
CBA a promising solution to natural language
processing tasks

Proposed CPIl-based approach to scale up cost-
based abduction to larger problems

CPIl-based approach significantly improved both
search-space generation and ILP inference runtimes
on large dataset

The inference engine is publicly available:

http://github.com/naoya-i/henry-n700/

Ongoing/future work

Ongoing work
— Evaluate on real-life natural language processing tasks
* Ongoing: RTE, coreference resolution (result: “not bad...”)

— Developing machine learning of costs

* Integration of statistical machine learning and logical inference

« CPI enables a learning mechanism to work
(inference is a subroutine of learning)

Future: apply CPI to search-space generation
— Not enumerate potential elemental hypotheses in advance

— Repeat:

* (i) accumulating potential elemental hypotheses that would give the
best explanation (according to some score function)

* (ii) peforming CBA on the accumulated set

— Analogously to CPI for Markov Logic Networks [Riedel 08]

