Toward Plan Recognition in Discourse Using Large-Scale Lexical Resources

Naoya Inoue, Kentaro Inui Tohoku University

Research Goal

 Recognizing an agent's belief and intention to achieve a goal (*plan*) in discourse

Research Background

Ready for practical discourse processing!

1980 1990 2000 1970 Work on discourse processing: Plan recognition · Plot Unit · Rhetorical Structure Theory Script using large-scale (Schank 77) (Lehnert 81) (Mann&Thompson 87) world knowledge Memory Organization Packets` (Schank 82) Intentional structure (Not explored) Script Applier Mechanism (Grosz&Sidner 86) Plot unit recognition Plan recognition (Schank 75) (Goyal+ 10) · Plan Applier Mechanism(Allen&Perrault 80; Carberry 90; Charniak&Goldman 91, 94; etc.) (Wilensky 78) The scale of knowledge base (KB): FrameNet ALAGIN (www.alagin.jp) (Baker+ 98) OpenCyc (opencyc.org) Hand-coded for each task. WordNet - Automatic script acquisition Ilbaum 98) (Gordon 10; Regneri+ 10; KB was insufficient for robust Chambers & Jurafsky 09, 10; etc.) discourse processing...

Issues of Large-Scale Plan Recognition

- Issue 1: The sufficiency of knowledge bases
 - Are existing large-scale knowledge bases enough to perform plan inference in an open-domain?

Main focus

- Issue 2: Inference mechanism
 - How should the inference system utilize large-scale knowledge bases?
 - → An existing framework++ as our first step

Overview of This Talk

- **Introduction**
 - Goal, motivation, key issues
- ☐ The plan inference model
 - Abductive inference
- ☐Knowledge base
 - Translation of the existing lexical resources
 - Meta-knowledge
- □ Experiments
 - Verification of the sufficiency of knowledge bases

The Plan Inference Model

Overview

- 1. Find the reasonable explanation (説明) to a situation described in a discourse
- 2. Build a goal-means tree from the explanation

Motivation

- Inferring agents' intention is subsumed by explaining a situation described in a discourse
- Number of previous work (Ng&Mooney 92; etc.) have formulated plan recognition as explanation discovery

Step 1/2: Finding the Explanation

- Abductive inference (仮説推論) is a suitable framework:
 - Given a knowledge base B and observations O
 - Find a minimal hypothesis H (*explanation*) such that $H \wedge B \models O, H \wedge B \not\models \bot$
- What is "minimal"?
 - Simplicity, cost-based (Hobbs+ 93; etc.), probabilistic
 (Charniak&Goldman 91), ...
 - Simplicity is adopted in this talk

Step 1/2: Find H s.t. $H \wedge B \models O, H \wedge B \not\models \bot$

Input text:

John was annoyed by fleas. He washed sheets.

Observations (0):

Knowledge base (*B*):

- (1) $remove(X, Y) \Rightarrow negative(Y)$
- (2) $remove(X, Y) \land dirt(Y) \land rel(Y, Z)$
- \Rightarrow wash(X, Z) -

(1)

 $\exists x, y, z \ (john(x) \land flea(y) \land negative(y) \land annoy(y, x) \land sheets(z) \land wash(x, z))$

ネガティブなもの (y) が存在する → 誰か (a1) がそれ (y) を除去する?

remove(a1, y) ⇒negative(y)

a1 = x, y = a2

 $remove(x, a2) \land dirt(a2) \land rel(a2, z) \Rightarrow wash(x, z)$

誰か = John (a1 = x)?

汚れ = ノミ (a2 = y)?

John (x) がシーツ (z) を洗っている → シーツ (z) の汚れ (a2) を落とすため?

(2)

Step 1/2: Find H s.t. $H \wedge B \models O, H \wedge B \not\models \bot$

Input text:

Knowledge base (B):

John was annoyed by fleas. He washed sheets.

-(1) remove(X, Y) ⇒ negative(Y)

(2) $remove(X, Y) \land dirt(Y) \land rel(Y, Z)$

 \Rightarrow wash(X, Z) -

Observations (0):

 $\exists x, y, z \ (\underline{\mathsf{john}(x)} \land \underline{\mathsf{flea}(y)} \land \mathsf{negative}(y) \land \underline{\mathsf{annoy}(y, x)} \land \underline{\mathsf{sheets}(z)} \land \mathsf{wash}(x, z))$

ネガティブなもの (y) が存在する → 誰か (a1) がそれ (y) を除去する? (1)

 $remove(a1, y) \Rightarrow negative(y)$

a1 = x, y = a2

 $\underline{remove(x, a2)} \land \underline{dirt(a2)} \land \underline{rel(a2, z)} \Rightarrow wash(x, z)$

誰か = John (a1 = x)?

汚れ = ノミ (a2 = y)つ

Hypothesis (*H*):

仮説:ジョンがシーツの

ノミを落としている

John (x) がシーツ (z) を洗っている → シーツ (z) の汚れ (a2) を落とすため?

(2)

 $john(x) \land flea(y) \land remove(x, y) \land annoy(y, x) \land sheets(z) \land dirt(y) \land rel(y, z)$

Step 1/2: Find H s.t. $H \wedge B \models O, H \wedge B \not\models \bot$

Input text:

Knowledge base (B):

John was annoyed by fleas. He washed sheets.

(1) remove(\mathbf{E} , \mathbf{X} , \mathbf{Y}) \Rightarrow negative(\mathbf{Y})

(2) remove(E1, X, Y) \land dirt(Y) \land rel(Y, Z) \land goal means(E1, E2) \Rightarrow wash(E2, X, Z)

Observations (0):

 $\exists x, y, z \ (\underline{\mathsf{john}(x)} \land \underline{\mathsf{flea}(y)} \land \mathsf{negative}(y) \land \underline{\mathsf{annoy}(e1, y, x)} \land \underline{\mathsf{sheets}(z)} \land \mathsf{wash}(e2, x, z))$

 $john(x) \land flea(y) \land remove(u1, x, y) \land annoy(e1, y, x) \land sheets(z) \land dirt(y) \land rel(y, z) \land goal_means(u1, e2)$

Overview of Our Knowledge Base

- 1. Convert existing lexical resources into axioms
- 2. Manually encode general inference rules of human beings (called *meta-knowledge*)

Axioms from Existing Lexical Resources

Synonym (1,419,948 axioms)

- Japanese WordNet 1.1 (Bond+ 08)
- A database of relations between events (Matsuyoshi+ 08)
- ex) $discover(x) \Rightarrow find(x)$ $clean(e1, x, y) \Rightarrow wash(e1, x, y)$

Hypernym-hyponym (1,871,984)

- Japanese WordNet 1.1 (Bond+ 08)
- A database of relations between events (Matsuyoshi+ 08)
- ex) $human(x) \Rightarrow mammal(x)$ $mammal(x) \Rightarrow human(x)$

Words of similar context (4,998,620)

- A database of words in similar context (Kazama+ 10)
- ex) $pillow(y) \Rightarrow futon(x)$

Relations between events (12,033)

- A database of relations between events (Matsuyoshi+ 08)
- ex) $dirt(z) \wedge rel(z,y) \wedge remove(e2,x,y) \wedge goal_means(e2,e1) \Rightarrow wash(e1,x,y)$

Sentiment polarity information (33,755)

- Japanese sentiment polarity lexicon (Higashiyama+ 08; Kobayashi+ 05)
- A database of trouble expressions (Saeger+ 08)
- ex) $negative(x) \Rightarrow flea(x)$

Meta-knowledge (23 axioms)

The variety of linguistic expressions

- ○○する(E1) \land $goal_means(E1, E2)$ \Rightarrow ○○機を使う(E2) ex) 掃除機を使う
- *X* を使う(*E*) ⇒ *X* で *Y* する(*E*) ex) 掃除機で対応する

State interaction of an object

- X が positive な状態である $\Rightarrow rel(X, Y) \land negative(Y) \land$ Y を取り除く
- -X \acute{N} \acute

Direct expression of plan

- $goal_means(X, Y)$ ⇒ X するために Y する
- $goal_means(X, Y) \Rightarrow goal_means(X, Z) \land Z$ したくないので Y する ex) 歩いて行きたくないので電車で行く

Associations between entities or events

- *Y* は動詞の項である ⇒ *Y* は名詞である
- *rel(X, Y)* ⇒ *X* は名詞である

Overview of This Talk

- **Introduction**
 - Goal, motivation, key issues
- - Abductive inference
- - Translation of the existing lexical resources
 - Meta-knowledge
- □ Experiments
 - Verification of the sufficiency of knowledge bases

Experiments

- Verify the sufficiency of knowledge base
 - Manually judged whether an inference path from an observed action to its goal could be bridged by the background knowledge
- Extracted the fairly open-domain
 - The 30 quest
 housekeepi
 - The popula
 - Manually co
 - Intra-sente
 - Co-referen

Results 1/3

- ② An inference path was generated for the actions of 77.4% (48/62)
 - Meta-knowledge was necessary to infer a plan for the positive instances of 56.3% (27/48)

Results 2/3

Input:

娘と私がノミに噛まれました。リビングにはラグがあります。 2,3日に一度掃除機をかけていますが、不十分でしょうか。毎日...

Explanation:

Results 3/3

- The explanations to the actions of 22.6% (14/62) were failed to generate
 - Due to a lack of world knowledge about NEs
 - Example

娘と私がノミに噛まれました。リビングにはラグがあり、2,3日に一度掃除機をかけていますが、不十分でしょうか。毎日掃除機をかければ、ノミはいなくなりますか?健康のことを考えると、できれば<u>バルサンは使い</u>たくありません。

- カビキラーを使う、ファブリーズをする、パイプフィニッシュを使う、カビ取りハイターを使う、バルサンを焚く
- World knowledge about telic role is crucial to recognize an intention
 - ex) バルサン: a substance used for killing insects

Findings from Our Experiments

1. The knowledge bases are moderately sufficient for exploring how to utilize them

2. Meta-knowledge plays an important role even if we have large-scale knowledge base

Recent Progress

- Developing the fast inference engine for Hobbs+ (93)'s weighted abduction
 - Automatically finds a reasonable explanation (in a limited setting) based on the cost of explanation
 - Solves a problem that can not be solved by state-ofthe-art engine (Mulkar-Mehta 07) in practical time
- Now we have an environment to try lots of interesting ideas!

Summary

- Discussed the sufficiency of knowledge bases in open-domain plan recognition
 - Findings:
 - Existing knowledge bases are moderately sufficient for exploring how to use them
 - Meta-knowledge plays an important role even if we have largescale world knowledge
- Topics to be addressed in the next step
 - A wider range of meta-knowledge
 - The efficient algorithm of abductive inference
 - Preliminary addressed in recent work
 - The mechanism to select the reasonable explanation