
ILP-based Reasoning  
for Weighted Abduction 

Naoya Inoue, Kentaro Inui!
Tohoku University 



Introduction 
u Goal: Plan recognition from natural 

language texts!

u Adopt abduction-based framework!
– Hobbs et al. (93)ʼs Weighted abduction!

u No tools available for large-scale problem!

2 



u Experiments with Mini-TACITUS (Mulkar-
Mehta 07) on Ng & Mooney (92)ʼs story 
understanding dataset!
– How many problems were solved in 10 

minutes? How much did it take?!

Scalability Problem 

3 

shopping 

go-to-store 

rich 

robbing 

poor 

42.0 % (21/50) 
63.7 sec. 

28.0 % (14/50) 
30.3 sec. 

28.0 % (14/50) 
30.3 sec. capitalist homeless 

100.0 % (50/50) 
0.7 sec. 

100.0 % (50/50) 
0.4 sec. 

100.0 % (50/50) 
0.1 sec. 

ILP-based 
Reasoning 



þ Introduction!
¨ Weighted Abduction!
¨ ILP-based Reasoning!
¨ Evaluation!

4 



Hobbs+ (93)ʼs Weighted Abduction 
u Abduction-based framework of 

natural language understanding!
u  “Interpreting sentences is to prove the logical 

forms of the sentences.”!
– Merging redundancies where possible!
– Making assumptions where necessary!

u  Important features!
– Best explanation is selected by assumability costs!
– Evaluating both likelihood and specificity 

appropriateness of the best explanation!
5 



Abduction 
u  Inference to the best explanation!

u Formally,!

6 

robbing ⇒ go-to-store 
shopping ⇒ go-to-store 
 
“go-to-store” is observed. 

Background knowledge: B 
Observations: O 

Hypothesis: H such that!
Given Find 

B, O, H: sets of logical formulae 

H ∪B |= O

H ∪B �|=⊥

shopping 

go-to-store 

robbing 

Itʼs necessary to quantify!
(i)  likelihood of H	

(ii)  appropriateness of 

specificity of H 



robbing ⇒ go-to-store 
 
shopping⇒ go-to-store 
 
robbing ⇒ get-gun 

Scheme of Weighted Abduction 

7 

1.4 

shopping 

go-to-store 

robbing 

get-gun 

robbing 

$10 $10 

1.2 

1.6 

$12                     $14                        $16 

UNIFICATION:  
smaller cost is taken 

BACKCHAINED: 
cost is propagated 

OBSERVATION: 
assumability cost is assigned 

AXIOM: 
assumability weight is assigned 



Hypothesis: H Background knowledge: B 
  robbing1.2 → get-gun 
  robbing1.5 → go-to-store 
  hunting1.1 → get-gun 
  shopping1.4 → go-to-store 
  poor1.3 → robbing 

8 
Observations: O       get-gun$10               go-to-store$10 

Background knowledge: B 
  robbing1.2 → get-gun 
  robbing1.5 → go-to-store 
  hunting1.1 → get-gun 
  shopping1.4 → go-to-store 
  poor1.3 → robbing 

Hypothesis: H 
 {hunting$11, shopping$14} 

hunting$11 shopping$14 robbing$12 

Hypothesis: H 
 {hunting$11, shopping$14} 
 {robbing$12} 

Background knowledge: B 
  robbing1.2 → get-gun 
  robbing1.5 → go-to-store 
  hunting1.1 → get-gun 
  shopping1.4 → go-to-store 
  poor1.3 → robbing 

Hypothesis: H 
 {hunting$11, shopping$14} 
 {robbing$12} 
 {poor$15.6} 

Background knowledge: B 
  robbing1.2 → get-gun 
  robbing1.5 → go-to-store 
  hunting1.1 → get-gun 
  shopping1.4 → go-to-store 
  poor1.3 → robbing 

poor$15.6 



Hypothesis: H Background knowledge: B 
  robbing1.2 → get-gun 
  robbing1.5 → go-to-store 
  hunting1.1 → get-gun 
  shopping1.4 → go-to-store 
  poor1.3 → robbing 

9 
Observations: O       get-gun$10               go-to-store$10 

Background knowledge: B 
  robbing1.2 → get-gun 
  robbing1.5 → go-to-store 
  hunting1.1 → get-gun 
  shopping1.4 → go-to-store 
  poor1.3 → robbing 

Hypothesis: H 
 {hunting$11, shopping$14} 
Hypothesis: H 
 {hunting$11, shopping$14} 
 {robbing$12} 

Background knowledge: B 
  robbing1.2 → get-gun 
  robbing1.5 → go-to-store 
  hunting1.1 → get-gun 
  shopping1.4 → go-to-store 
  poor1.3 → robbing 

Hypothesis: H 
 {hunting$11, shopping$14} 
 {robbing$12} 
 {poor$15.6} 
      : 

Background knowledge: B 
  robbing1.2 → get-gun 
  robbing1.5 → go-to-store 
  hunting1.1 → get-gun 
  shopping1.4 → go-to-store 
  poor1.3 → robbing 

- Best explanation is least-cost explanation#
- Appropriate specificity is selected Implementation Issue:#

The combinatorial explosion of!
candidate hypotheses.!



10 

get-gun$10          go-to-store$10 

hunting$11 shopping$14 robbing$12 

poor$15.6 

u  Assign 0-1 ILP variables over all literals 
potentially included in the best hypothesis 
for representing candidate hypotheses!

u  Cost of hypothesis is represented as the 
sum of variables!

u  There is efficient algorithms to find the 
optimal assignment of variables 	


Key ideas: 

  H1 = {robbing$12} 
  H2 = {poor$15.6} 
  H3 = {hunting$11, shopping$14} 
              : 

Naive approach 

Our solution: ILP-based Reasoning 

hget-gun  hhunting  hrobbing, ... 
rget-gun  rhunting  rrobbing, ... 
urobbing1,robbing2 ... 
 

C(H) = 10・hget-gun,  
            + 11・hhunting, ... 

arg min
i

C(Hi)

C(Hi) =
�

h∈Hi

c(h)

arg min
hget−gun,hhunting,...

C(H)



: hgs 

: hs : hr2 : hr1 

: hgg 

: hh 

u  P: set of literals potentially included in hypothesis!
u  hp: 1 if literal p is included in hypothesis!

go-to-store$10 get-gun$10  

shopping$14 robbing$12 robbing$15 hunting$11 

ILP formulation (h → r → u) 

11 
P = {get-gun, go-to-store, hunting, robbing1, ...} 

= 1 

= 1 = 0 = 0 

= 1 

= 1 

H = {hunting$11, shopping$14} 

arg min
h

�

p∈{p|p∈P,hp=1}

c(p)

= 1 

= 0 = 1 = 1 

= 1 

= 0 

H = {robbing$12} 



u  P: set of literals potentially included in hypothesis!
u  hp: 1 if literal p is included in hypothesis!
u  rp: 1 if literal p doesnʼt pay its cost!

ILP formulation (h → r → u) 

12 

arg min
h,r

�

p∈{p|p∈P,hp=1,rp=0}

c(p)

: hgs, rgs 

: hs, rs : hr2, rr2 : hr1, rr1 

: hgg, rgg 

: hh, rh 

go-to-store$10 get-gun$10  

shopping$14 robbing$12 robbing$15 hunting$11 

P = {get-gun, go-to-store, hunting, robbing1, ...} 

= 1, 1 

= 0, 0 = 1, 0 = 1, 0 

= 1, 1 

= 0, 0 

H = {robbing$12} 



u  P: set of literals potentially included in hypothesis!
u  hp: 1 if literal p is included in hypothesis!
u  rp: 1 if literal p doesnʼt pay its cost!
u  up, q: 1 if literal p is unified with literal q!

ILP formulation (h → r → u) 

13 

ur1,r2 = 1 

arg min
h,r

�

p∈{p|p∈P,hp=1,rp=0}

c(p)

: hgs, rgs 

: hs, rs : hr2, rr2 : hr1, rr1 

: hgg, rgg 

: hh, rh 

go-to-store$10 get-gun$10  

shopping$14 robbing$12 robbing$15 hunting$11 

P = {get-gun, go-to-store, hunting, robbing1, ...} 

= 1, 1 

= 0, 0 = 1, 0 = 1, 0 

= 1, 1 

= 0, 0 

H = {robbing$12} 



ILP Constraints 

14 

go-to-store$10 

robbing$12 

poor$15.6 

get-gun$10  

robbing$15 

poor$19.5 

: hgs, rgs 

: hr2, rr2 

: hp2, rp2 : hp1, rp1 

: hr1, rr1 

: hgg, rgg 

up1,p2 

ur1,r2 

Literals do not pay cost (r=1) only if they are!
(i) explained by another literal (h=1), or!
(ii) unified with another literal (u=1) of lesser cost 

 

rr2 ≤ hp2 + ur1,r2 
 

rgg ≤ hr1 

hgs = 1 
Literals in observations must be!
included in a hypothesis 

2*up1,p2 ≤ hp1+hp2 

Literals can be unified (u=1) only 
if they are hypothesized (h=1) 



Evaluation 
u How scalable is our approach?!
– Plotted (depth, inference time)!
•  The depth limit of back-chaining!
•  Inference time averaged for all problems!

u Dataset!
– 50 problems in Ng & Mooney (92)ʼs story 

understanding corpus!

15 



Results 

u  The increase of inference time is not exponential 
to the number of candidate hypotheses!

Ø  Indicates the efficiency of our approach! 
16 

0!

20!

40!

60!

80!

100!

120!

140!

160!

180!

d=1! d=2! d=3! d=4! d=5!

Av
er

ag
ed

 n
um

be
r o

f!
 p

ot
en

tia
l e

le
m

en
ta

l h
yp

ot
he

se
s

Depth parameter d

Figure 4: The complexity of each problem setting

a conjunction of literals. For example, in the problem t2, the
following observation literals are provided:
(1) inst(get2, getting) ∧ agent get(get2, bob2) ∧

name(bob2, bob) ∧ patient get(get2, gun2) ∧
inst(gun2, gun) ∧ precede(get2, getoff2) ∧
inst(getoff2, getting off) ∧
agent get off(getoff2, bob2) ∧
patient get off(getoff2, bus2) ∧ inst(bus2, bus) ∧
place get off(getoff2, ls2) ∧ inst(ls2, liquor store)

This logical form denotes a natural language sentence “Bob

got a gun. He got off the bus at the liquor store.” The plan
recognition system requires to infer Bob’s plan from these
observations using background knowledge. The background
knowledge base contains Horn-clause axioms such as:
(2) inst(R, robbing) ∧ get weapon step(R,G) ⇒

inst(G, getting)

From this dataset, we created two types of testsets: (i)
testset A: Ng and Mooney’s original dataset, (ii) testset B:
a modified version of testset A. For both testsets, we as-
signed uniform weights to antecedents in background ax-
ioms so that the sum of those equals 1, and assigned $20
to each observation literal. We created testset B so that
the background knowledge base does not contain a con-
stant in its arguments since Mini-TACITUS does not al-
low us to use constants in background knowledge axiom.
Specifically, we converted the predicate inst(X,Y ) that de-
notes X is a instance of Y into a form of inst Y (X) (e.g.,
inst(get2, getting) is converted into inst getting(get2)
). We also converted an axiom involving a constant in
its arguments into neo-Davidsonian style. For example,
occupation(A, busdriver), where busdriver is a constant,
is converted to busdriver(X) ∧ occupation(A,X). These
two conversions did not affect the complexity of the prob-
lems substantially.

5.2 Results and discussion
We first show the complexity of abduction problems in

our testset A. Figure 4 shows the number of potential el-
emental hypotheses, P described in Section 4.2, averaged
for 50 problems. As d increases, the number of elemental
hypotheses increases constantly. Recall that the number of

0!

500!

1000!

1500!

2000!

2500!

d=1! d=2! d=3! d=4! d=5!

Av
er

ag
ed

 n
um

be
r o

f!
va

ria
bl

es
/c

on
st

ra
in

ts

Depth parameter d

variables!
constraints!

Figure 5: The complexity of each ILP problem

!"!!!#

!"$!!#

!"%!!#

!"&!!#

!"'!!#

("!!!#

("$!!#

("%!!#

("&!!#

("'!!#

$"!!!#

)*(# )*$# )*+# )*%# )*,#

!"
#$
%$
"&
$'
()

$'
*+
$&
,"

-+
.

/$012'03%3)$1$%'-

-./#

0120312#

Figure 6: The efficiency of the ILP-based formulation
“prepare” and “ILP” denote the time required to convert a
weighted abduction problem to ILP problem, and the time

required to solve the ILP problem respectively.

candidate hypotheses is O(2n), where n is the number of
potential elemental hypotheses. Therefore, in our testset, we
roughly have 2160 ≈ 1.46 · 1048 candidate hypotheses for a
propositional case if we set d = 5. Figure 5 illustrates the
number of variables and constraints of a ILP problem for
each parameter d, averaged for 50 problems. Although the
complexity of the ILP problem increases, we can rely on an
efficient algorithm to solve a complex ILP problem.

The results of inference time in our framework on test-

set A is given in Figure 6 in the two distinct measures: (i)
the time of conversion to ILP problem, and (ii) the time
ILP technique had took to find an optimal solution. Figure 6
demonstrates that our framework is capable of coping with
larger scale problems, since the inference can be performed
in polynomial time to the size of the problem.

Then we show the inference time of Mini-TACITUS on
testset B. The complexity of the testset was quite similar
to the testset A since the modification affecting the origi-
nal complexity occurred in only 2 axioms. On testset B, we
have confirmed that our framework had solved the 100%
of the problems for 1 ≤ d ≤ 5, and it took 1.16 seconds
when averaged for the 50 problems of d = 5. The results

0!

20!

40!

60!

80!

100!

120!

140!

160!

180!

d=1! d=2! d=3! d=4! d=5!

Av
er

ag
ed

 n
um

be
r o

f!
 p

ot
en

tia
l e

le
m

en
ta

l h
yp

ot
he

se
s

Depth parameter d

Figure 4: The complexity of each problem setting

a conjunction of literals. For example, in the problem t2, the
following observation literals are provided:
(1) inst(get2, getting) ∧ agent get(get2, bob2) ∧

name(bob2, bob) ∧ patient get(get2, gun2) ∧
inst(gun2, gun) ∧ precede(get2, getoff2) ∧
inst(getoff2, getting off) ∧
agent get off(getoff2, bob2) ∧
patient get off(getoff2, bus2) ∧ inst(bus2, bus) ∧
place get off(getoff2, ls2) ∧ inst(ls2, liquor store)

This logical form denotes a natural language sentence “Bob

got a gun. He got off the bus at the liquor store.” The plan
recognition system requires to infer Bob’s plan from these
observations using background knowledge. The background
knowledge base contains Horn-clause axioms such as:
(2) inst(R, robbing) ∧ get weapon step(R,G) ⇒

inst(G, getting)

From this dataset, we created two types of testsets: (i)
testset A: Ng and Mooney’s original dataset, (ii) testset B:
a modified version of testset A. For both testsets, we as-
signed uniform weights to antecedents in background ax-
ioms so that the sum of those equals 1, and assigned $20
to each observation literal. We created testset B so that
the background knowledge base does not contain a con-
stant in its arguments since Mini-TACITUS does not al-
low us to use constants in background knowledge axiom.
Specifically, we converted the predicate inst(X,Y ) that de-
notes X is a instance of Y into a form of inst Y (X) (e.g.,
inst(get2, getting) is converted into inst getting(get2)
). We also converted an axiom involving a constant in
its arguments into neo-Davidsonian style. For example,
occupation(A, busdriver), where busdriver is a constant,
is converted to busdriver(X) ∧ occupation(A,X). These
two conversions did not affect the complexity of the prob-
lems substantially.

5.2 Results and discussion
We first show the complexity of abduction problems in

our testset A. Figure 4 shows the number of potential el-
emental hypotheses, P described in Section 4.2, averaged
for 50 problems. As d increases, the number of elemental
hypotheses increases constantly. Recall that the number of

0!

500!

1000!

1500!

2000!

2500!

d=1! d=2! d=3! d=4! d=5!

Av
er

ag
ed

 n
um

be
r o

f!
va

ria
bl

es
/c

on
st

ra
in

ts

Depth parameter d

variables!
constraints!

Figure 5: The complexity of each ILP problem

!"!!!#

!"$!!#

!"%!!#

!"&!!#

!"'!!#

("!!!#

("$!!#

("%!!#

("&!!#

("'!!#

$"!!!#

)*(# )*$# )*+# )*%# )*,#

!"
#$
%$
"&
$'
()

$'
*+
$&
,"

-+
.

/$012'03%3)$1$%'-

-./#

0120312#

Figure 6: The efficiency of the ILP-based formulation
“prepare” and “ILP” denote the time required to convert a
weighted abduction problem to ILP problem, and the time

required to solve the ILP problem respectively.

candidate hypotheses is O(2n), where n is the number of
potential elemental hypotheses. Therefore, in our testset, we
roughly have 2160 ≈ 1.46 · 1048 candidate hypotheses for a
propositional case if we set d = 5. Figure 5 illustrates the
number of variables and constraints of a ILP problem for
each parameter d, averaged for 50 problems. Although the
complexity of the ILP problem increases, we can rely on an
efficient algorithm to solve a complex ILP problem.

The results of inference time in our framework on test-

set A is given in Figure 6 in the two distinct measures: (i)
the time of conversion to ILP problem, and (ii) the time
ILP technique had took to find an optimal solution. Figure 6
demonstrates that our framework is capable of coping with
larger scale problems, since the inference can be performed
in polynomial time to the size of the problem.

Then we show the inference time of Mini-TACITUS on
testset B. The complexity of the testset was quite similar
to the testset A since the modification affecting the origi-
nal complexity occurred in only 2 axioms. On testset B, we
have confirmed that our framework had solved the 100%
of the problems for 1 ≤ d ≤ 5, and it took 1.16 seconds
when averaged for the 50 problems of d = 5. The results

257 
295 2115 2136 

2157 



Summary 
u Addressed the issue of scalability for 

abductive reasoning!
u Proposed ILP-based approach to Hobbs 

et al. (93)ʼs weighted abduction!
u Results of our experiments showed that:!
– our approach efficiently finds the best 

explanation!
u Future work!
– Exploring the semantics of weights, costs!
– To handle negation in ILP-based approach 

17 THANK YOU! 


