# ILP-based Reasoning for Weighted Abduction

Naoya Inoue, Kentaro Inui Tohoku University

## Introduction

#### Goal: Plan recognition from natural language texts

# Adopt abduction-based framework Hobbs et al. (93)'s Weighted abduction

No tools available for large-scale problem

## **Scalability Problem**

Experiments with Mini-TACITUS (Mulkar-Mehta 07) on Ng & Mooney (92)'s story understanding dataset

# - How many problems were solver Reasoning minutes? How much did it take?



# Introduction Weighted Abduction ILP-based Reasoning Evaluation

# Hobbs+ (93)'s Weighted Abduction

- Abduction-based framework of natural language understanding
- "Interpreting sentences is to prove the logical forms of the sentences."
  - Merging redundancies where possible
  - Making assumptions where necessary
- Important features
  - Best explanation is selected by assumability costs
  - Evaluating both likelihood and specificity appropriateness of the best explanation

## Abduction

#### Inference to the best explanation



B, O, H: sets of logical formulae

## **Scheme of Weighted Abduction**



#### Background knowledge: *B* robbing<sup>1.2</sup> $\rightarrow$ get-gun robbing<sup>1.5</sup> $\rightarrow$ go-to-store hunting<sup>1.1</sup> $\rightarrow$ get-gun shopping<sup>1.4</sup> $\rightarrow$ go-to-store poor<sup>1.3</sup> $\rightarrow$ robbing

Hypothesis: *H* {hunting<sup>\$11</sup>, shopping<sup>\$14</sup>} {robbing<sup>\$12</sup>} {poor<sup>\$15.6</sup>}



#### Background knowledge: B

robbing<sup>1.2</sup>  $\rightarrow$  get-gun robbing<sup>1.5</sup>  $\rightarrow$  go-to-store hunting<sup>1.1</sup>  $\rightarrow$  get-gun shopping<sup>1.4</sup>  $\rightarrow$  go-to-store poor<sup>1.3</sup>  $\rightarrow$  robbing

Implementation Issue: The combinatorial explosion of candidate hypotheses.



anation is least-cost explanation ite specificity is selected

**Observations:** *O* 

get-gun<sup>\$10</sup>

go-to-store<sup>\$10</sup>





*P*: set of literals potentially included in hypothesis
 *h<sub>p</sub>*: 1 if literal *p* is included in hypothesis



 $P = \{\text{get-gun, go-to-store, hunting, robbing1, ...}\}$ 

ILP formulation (
$$h \rightarrow r \rightarrow u$$
)  

$$\underset{h,r}{\operatorname{arg min}} \sum_{p \in \{p | p \in P, h_p = 1, r_p = 0\}} c(p)$$

- *P*: set of literals potentially included in hypothesis
   *h<sub>p</sub>*: 1 if literal *p* is included in hypothesis
- $r_p$ : 1 if literal p doesn't pay its cost



 $P = \{\text{get-gun, go-to-store, hunting, robbing1, ...}\}$ 

ILP formulation (h 
$$\rightarrow$$
 r  $\rightarrow$  U)  

$$\underset{h,r}{\operatorname{arg min}} \sum_{p \in \{p | p \in P, h_p = 1, r_p = 0\}} c(p)$$

*P*: set of literals potentially included in hypothesis
 *h<sub>p</sub>*: 1 if literal *p* is included in hypothesis
 *r<sub>p</sub>*: 1 if literal *p* doesn't pay its cost

•  $u_{p,q}$ : 1 if literal p is unified with literal q

 $H = {\text{robbing}^{\$12}}$ 



 $P = \{\text{get-gun, go-to-store, hunting, robbing1, ...}\}$ 

#### **ILP Constraints**



## **Evaluation**

#### How scalable is our approach?

- Plotted (depth, inference time)

- The depth limit of back-chaining
- Inference time averaged for all problems

#### Dataset

 – 50 problems in Ng & Mooney (92)'s story understanding corpus





- The increase of inference time is not exponential to the number of candidate hypotheses
- Indicates the efficiency of our approach!

# Summary

- Addressed the issue of scalability for abductive reasoning
- Proposed ILP-based approach to Hobbs et al. (93)'s weighted abduction

#### Results of our experiments showed that:

- our approach efficiently finds the best explanation
- Future work
  - Exploring the semantics of weights, costs
  - To handle negation in ILP-based approach

